
Code Pulse: Real-Time Code Coverage for
Penetration Testing Activities

Hassan Radwan, Kenneth Prole
Secure Decisions Division

Applied Visions, Inc.
Northport, NY, USA

{Hassan.Radwan, Ken.Prole} @securedecisions.com

Abstract— A continuous challenge facing software penetration
testers is ensuring adequate coverage of a target application.
Many dynamic application security testing tools and manual pen-
testing techniques test only part of the exposed code base, leaving
much of the attack surface untested. A purely black box
approach, used by most DAST tools, makes it almost impossible
to accurately identify how much of the attack surface of an
application was tested for penetration during assessment. Glass
box testing techniques, as described in this paper, significantly
improve the insight that penetration testers have into the
coverage and makeup of the applications they are targeting. This
paper reports on DHS-funded research which resulted in an
innovative open source tool called Code Pulse that provides real-
time code coverage for pen-testing Java web applications. Code
Pulse leverages the Java instrumentation libraries to provide a
real-time glass box perspective of method calls as they are
exercised during security testing activities. While the concept of
glass box testing is not new, Code Pulse delivers a novel real-time
approach to the challenge while maintaining a tool-agnostic
approach. In this paper we will outline the code coverage
challenges facing penetration testers, describe the state-of-the-art
in software assurance code coverage, the innovative aspects of
our approach and its contribution to the state-of-the-art, the
feedback we have received since releasing it as an Open Web
Application Security Project (OWASP) pen-testing application in
May 2014, and the planned improvements to Code Pulse.

Keywords: penetration testing, code coverage, instrumentation,
application security, software assurance, software visualization,
cybersecurity, software testing, DAST, OWASP

I. INTRODUCTION
Penetration testing is increasingly becoming a cornerstone

process in securing applications prior to operational
deployment. Penetration testers, also know as ethical hackers or
white hat testers, have a variety of techniques and tools in their
vulnerability discovery toolbox. Some testers rely on manual
probing of a target system’s attack surface, whilst others
leverage the ever-increasing availability of automated dynamic
application security testing (DAST) tools. The majority,
however, rely on a combination of both manual and automated
approaches to identify vulnerabilities – such as the ones listed
in the OWASP Top 10 [1] – before the not-so-friendly
attackers exploit them resulting in the types of data breaches
that are unfortunately ever prevalent in today’s news cycle.

From a penetration tester’s perspective, the system being
probed for vulnerabilities is opaque. In the case of a web
application, a tester might be aware of some of the site’s entry
points via link navigation, however, that is a far cry from
understanding what the complete attack surface is or which
parts of the system internals are exercised with the varying test
inputs. This is why this type of testing is colloquially known as
black box testing. There is little to no insight into the makeup
of the system being tested and which parts are accessible to the
outside. The testing interaction is thereby reduced to a series of
test inputs that are based more on best practices and instinct
than direct knowledge of a system or an effective feedback
loop. The resulting process is akin to a game of “Who am I?”
that we’ve all played on road trips, albeit significantly more
sophisticated. This by no means is meant as a shot at the
incredibly valuable results yielded by effective penetration
testers. It is meant to demonstrate to the reader the degree of
the challenge facing our ethical hackers.

One might argue that attackers face the same challenges.
However, an important distinction is that whilst the goal of an
attacker is to find just a single exploitable vulnerability, the
goal of our friendly penetration tester is to ensure there are
none to be exploited across the entire system. Test coverage is
therefore a critical measure for the penetration testing process.
Gaining insight into which parts of an application remain to be
tested and which parts of the system react to test inputs provide
testers with the information they need to create an effective
feedback loop for the testing process. Understanding coverage
is important not just to better guide the testing process for
individual assessments, but also for getting a broader coverage
perspective across all tools and techniques, helping identify the
coverage overlaps and more importantly the coverage gaps.
Unfortunately given the inherent challenges of black box
testing, getting an accurate measure of the test coverage is a
difficult and sometimes even impossible task.

Getting the insight into the makeup and coverage of an
application transforms the process from black box to glass box
testing – a runtime testing process where the internal
composition and behavior of the test application are
observable. We’ve contributed Code Pulse, an open source
glass box tool focused specifically at identifying the code
coverage of penetration testing activities in real-time. In this
paper we will describe the glass box approach taken by Code

Pulse, a sample usage scenario, and discuss the benefits and
challenges of this work.

II. SYSTEM DESIGN
Two key decisions were made in the early phases of our

work. The first was to scope our efforts to identifying coverage
data for web applications, and the second was to limit our
coverage identification to Java applications. These
requirements pointed our attention at a large user population
that would benefit from the Code Pulse solution while focusing
our attention on an achievable goal within our constraints. As
such, the discussion in the remainder of the paper, while we
believe it to be applicable to a broad range of software, will be
colored by these two decisions.

In designing the Code Pulse system, there were two
primary concerns: how best to identify the coverage data; and
how best to communicate it to the users.

A. Coverage Identification
A challenge when considering the nature of relevant

coverage data is the disparity between the viewpoint of a
penetration tester and the actual source code composition of an
application. In the case of web applications, penetration testers
are interfacing with the various web pages that form the entry
points for the application. However, the sitemap and its
corresponding URL-set does not necessarily translate directly

to the basic code building blocks (classes, methods, etc.) that
ultimately process the inputs being passed by the penetration
testers. This is largely dependent on the platform and web
frameworks in use and more often than not a URL routing
mechanism will exist to dispatch URL requests to specific code
dependent on the provided inputs. Consider a hypothetical web
application with a URL to generate a report with the format
(PDF or XML for instance) specified as an input parameter to
the same URL. The PDF and XML report generation will result
in different code being called, despite the same URL entry
point.

Identifying the full set of URLs forming the attack surface
of a web application is a non-trivial problem due to a
significant disparity in URL route dispatching between web
frameworks. For Java alone, a quick cursory search reveals that
there are at least 35 established web frameworks [2], each with
its independent mechanism for URL handling. But these same
35 frameworks ultimately all call Java code elements regardless
of their built-in URL routing mechanism. Therefore creating a
set of URL coverage monitors, one per supported web
framework, was a non-starter due to the lack of scalability and
specificity of the solution. A more generic approach is to
observe the code elements as they are called for each request.

In addition, taking a step back to reflect on the penetration
testing process, after vulnerabilities are detected the next step
in the process is to notify the development team of the issues.

Figure 1. Code Pulse real-time highlighting of recently called Java packages and methods for an application under testing

Understanding the coverage data at the source code level gives
developers the best data on which parts of the application are
impacted by the identified vulnerabilities as they determine the
best remediation recourse. Therefore, from a developer user
perspective the most effective coverage data would represent
the relevant source code entities that need their attention.

For these reasons, we decided to focus the Code Pulse
coverage identification at the source code level, providing a
tool-agnostic approach at coverage collection. This does not
nullify the validity of URLs as coverage data, and certainly
from a penetration tester user’s perspective, the ideal data
would identify both the source code coverage along with the
URL site map of an application and its expected inputs. We
aspire to reconcile that in future efforts.

B. Coverage Communication
Identifying the timing for communicating the coverage data

was a key design challenge. Collecting the data and presenting
it in summary form at the end of the testing process does not
empower penetration testers with quick adjustments of their
testing activity based on application response. On the other
hand presenting coverage in real-time is also a challenge due
to the sheer volume of data. A single web request can result in
tens or even hundreds of thousands of methods calls.
Overwhelming the user with too much coverage information is
arguably more harmful than not presenting it at all since the
abundant data results in a cognitive load that takes away from
the testing process instead of enhancing it.

Visualizations have been used to great effect to summarize

large volumes of data in a meaningful manner. When facing
large data volumes or data of a complex nature, we, as
humans, process data visually more effectively than text-based
alternatives [3]. In addition when used in combination with
relevant data filters and interactions, we excel at identifying
data patterns visually. The effectiveness of presenting a
software hierarchy in a treemap visualization [4] has been
repeatedly [5] demonstrated over the years [6] and is
increasingly becoming a familiar visualization within
commercial software analysis tools [7].

The conclusion of our explorations on how to communicate
the coverage data was to present it as quickly as possible to the
penetration testers, and to do so leveraging visualizations to
improve the data readability.

III. APPROACH
Our efforts in Code Pulse had the ambition of turning the

black box perspective facing penetration testers into a glass
box one. The Code Pulse approach to achieve this glass box
perspective is to leverage software instrumentation to
represent the code coverage visually in real-time to penetration
testers whilst conducting their tests. There are two top-level
components to the Code Pulse system architecture: the
instrumentation component responsible for monitoring code
coverage of target applications at runtime; and the front-end
user interface and visualization responsible for representing
the coverage information in an easily digestible manner.

A. Instrumentation

Figure 2. Highlighting the distinct and overlapping coverage for a manual penetration test and an automated one

To identify coverage data Code Pulse leverages Java’s
instrumentation libraries and uses an agent-based approach.
Using a Java Virtual Machine (JVM) directive, the Code Pulse
agent is loaded prior to loading any other libraries and classes.
Once initialized, the Code Pulse agent starts monitoring the
JVM class loaders and injects monitoring bytecode in the
classes of interest. By default, third-party libraries are not
instrumented in this phase, although users have the option to
override that and select libraries, or even specific packages
within them for coverage monitoring.

A key constraint of the instrumentation component is the
requirement to have minimal impact on the resources of the
target application. To satisfy that constraint, the system had to
be designed to perform minimal work in the same execution
context as the target application and instead rely on another
context to process the coverage data. Therefore the monitoring
component was set up into two distinct pieces using a client /
server model. The agent (client) runs in the same JVM as the
target application that will be tested. As the target application
runs, the agent listens in on the execution and sends the
coverage information to the server for processing and storage.
This high-level separation is shown in Figure 3. The separation
in responsibility between the observer and data is key to
limiting the impact on the traced application and reduce the
footprint of the agent to the lowest possible condition. Note
that nothing prevents the agent and server from running on the
same machine, and in fact is anticipated to be a frequent use
case.

Figure 3. Overview of the instrumentation client/server model

A number of tests were conducted on the performance
impact of the instrumentation on target applications. The
results varied significantly depending on the nature of the
application. Overhead was significant for graphics intensive
applications conducting many sustained rendering method
calls. Conversely for web applications where execution
patterns followed short quick bursts, the overhead, while still
measurable, was not noticeable in normal usage. The average
instrumentation overhead range for web applications using our
current implementation is a slowdown factor of about 1.5-2.5.

B. Visualization
To represent the coverage data in Code Pulse a treemap

visualization was used. Two types of nodes were represented in
the treemap. Java package nodes were shown as slim labels and
only served as a point of reference within the visualization. The
other nodes all represented either Java classes or Java Server

Pages (JSP) files. These node types were the focus of the
visualization and were sized by bytecode instruction count. In a
default state, prior to any coverage activity, nodes are colored
in a light grey color. As coverage activity occurs for a method
or JSP file, the node shading changed to indicate that it had
been covered during the testing activity.

The treemap served a variety of purposes. The first was
real-time activity highlighting. As methods were called, they
were highlighted in real-time within the treemap to indicate to
the user which parts of the application their testing activity
impacted. An example of this real-time highlighting can be
seen in Figure 1 with the orange shaded nodes. The second
purpose was to serve as the persistent coverage indicator for
tested methods and files. As methods are called as a result of
testing activity, its color indicator changed from the default
light grey color. Finally, the treemap was used to drive the
coverage overlap analysis. Coverage data in Code Pulse can be
segmented using labeled markers. When multiple markers are
selected, the treemap changes the coloring of the nodes to
reflect which ones were covered within a single segment, and
which ones had overlapped coverage. The distinct coverage for
a manual penetration test (green) and an automated one (blue)
along with the shared coverage overlaps (dark grey) can be
seen in Figure 2.

IV. COVERAGE SCENARIO
To test the utility of Code Pulse at representing coverage

data we set up a timed test to identify how much test coverage
can be improved using a DAST tool. We limited ourselves to
20 minutes of testing and used a community test application
designed explicitly with known vulnerabilities to test DAST
tools. The test application was Web Application Vulnerability
Scanner Evaluation Project (WAVSEP) [8] and the DAST tool
used to test it was OWASP Zed Attack Proxy (more commonly
known as ZAP) [9].

Within the allotted 20 minutes, three separate scans were
conducted, each progressive one with additional tuning applied
in reaction to the coverage results from the previous scan. The
purpose of the tuning is to provide ZAP with a better
understanding of the test application. The result of the three
scans is summarized in Figure 4.

The first scan was conducted with no configuration to the
DAST tool other than pointing it at the host and port number to
test. WAVSEP’s sitemap is intentionally obscure, so it’s not
surprising that the tool only found the main index page (the
single blue square in the top left of the 1st scan in Figure 4).

The second scan was conducted after seeding ZAP with the
key top-level WAVSEP entry pages. Despite the seeding
process only a small subset of the pages was uncovered by
ZAP’s discovery mechanisms and was tested. The covered
pages are once again colored in blue.

The third and final scan was conducted after further seeding
of the sitemap. With the emergence of visual patterns in the 3rd
scan treemap results from Figure 4 several quick observations
can be derived:

• A large block of the code, in the left portion of the
treemap, remains undiscovered and untested.

• Despite getting good test coverage, there are several
isolated grey nodes in the sea of blue in the right
portion of the treemap.

• The middle section of the treemap was fully covered.

A number of conclusions can be drawn from this exercise:

1. The turnaround between DAST scans was incredibly
quick with Code Pulse. Visually processing the
coverage data after each scan was a quick exercise
that made inadequate sitemap configuration
immediately obvious.

2. Small coverage gaps as seen in the 3rd scan would
have been very challenging if not impossible to
identify via manual processing of the test logs. With
the treemap visualization a quick scan revealed
coverage insight that would have most likely
remained unnoticed otherwise.

3. The treemap visualization is a great communication
tool. The whole testing process was summarized in
three screenshots showing the coverage progression
and coverage gaps at the conclusion of the test
scenario.

V. RELATED WORK
Shay Chen, an information security researcher and blogger,

has published several comparison studies of DAST tools [10].
There exists over 60 open-source and commercial DAST tools
aimed at identifying security flaws in web applications. The
majority of these tools are purely black box, meaning by
definition they have no insight into the internals of the
application under test, and therefore have no way to provide
code coverage insight. A few commercial tools use glass box
techniques similar to Code Pulse to make the DAST scanning
more intelligent. Most notable are IBM’s AppScan [11] and HP
Fortify’s WebInspect Real-Time [12]. These solutions however
do not offer code coverage metrics nor interactive
visualizations, and are tied to their DAST tool, unlike Code
Pulse, which is tool agnostic.

Several open-source and commercial tools exist that focus
on providing code coverage information [13]. Some of these
include Atlassion Clover [7], JaCoCo [14], and JCov [15].
These solutions are used by developers to improve the code

coverage of unit tests for the purposes of improving the quality
of an application. This differs from the objective of Code Pulse

where the focus is on software assurance code coverage for use
by penetration testers. The other key difference is none of the
existing solutions offer real-time code coverage. The output of
these tools is provided after the coverage analysis is complete.
There is no real-time interactive feedback loop as provided in
Code Pulse, which allows penetration testers to alter their
testing technique based on coverage results and compare
coverage between multiple tools.

VI. CONCLUSION
In this paper we presented a new approach for glass box

testing that marries real-time instrumentation with real-time
visualization to improve penetration testing coverage. This
technique supports manual and automated testing approaches,
and is tool-agnostic. We also presented the resultant tool,
Code Pulse, released as an open source tool and joins the
diverse project inventory of the Open Web Application
Security Project (OWASP). It is freely available for download
and extension at http://code-pulse.com. Whilst the initial
reception for the tool and approach has been very positive, the
feedback we’ve received thus far has helped us identify a
number of future directions for improvement.

First, we will investigate adding support for additional
platforms and language. The Java-based instrumentation limits
the utility of this tool to Java applications. .NET support is
currently high on our priority list, although we’ve also
received requests for a variety of dynamic languages.

Second, we will investigate increasing the precision of the
coverage instrumentation from its current method level-of-
detail to block-level coverage. Although providing coverage
insight at the current precision has proven to be valuable,
being able to distinguish between statements that were
executed vs others that were not within a method due to
conditional logic or other flow control mechanisms would
further increase the utility of the resulting tool.

Finally, to better support increased levels of precision and
other use cases, we intend to investigate improving the
instrumentation performance.

Figure 4. Progressive tuning of test coverage for an automated penetration test

ACKNOWLEDGMENT
This work was partially funded by the Department of

Homeland Security (DHS) Science and Technology
Directorate, Cyber Security Division (DHS S&T/CSD), BAA
11-02 and Air Force Research Laboratory information
Directorate via contract number FA8750-12-C-0219.

 The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of Department of Homeland Security,
Air Force Research Laboratory or the U.S. Government.

REFERENCES
[1] OWASP Top Ten Project,

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
[2] Wikipedia listing of Java Web Frameworks,

http://en.wikipedia.org/wiki/Comparison_of_web_application_framewor
ks#Java.

[3] S. Card, J. Mackinlay, B. Shneiderman, “Readings in information
visualization: using vision to think”. Morgan Kaufmann Publishers.
1999.

[4] B. Shneiderman, "Tree visualization with tree-maps: 2-d space-filling
approach." ACM Transactions on graphics (TOG) 11.1 (1992): 92-99.

[5] G. Langelier, H. Sahraoui, P. Poulin, "Visualization-based analysis of
quality for large-scale software systems." Proceedings of the 20th
IEEE/ACM international Conference on Automated software
engineering. ACM, 2005.

[6] R. Wettel, "Visual exploration of large-scale evolving software."
Software Engineering-Companion Volume, 2009. ICSE-Companion
2009. 31st International Conference on. IEEE, 2009.

[7] Atlassion Clover , https://www.atlassian.com/software/clover/overview.
[8] Web Application Vulnerability Scanner Evaluation Project,

https://code.google.com/p/wavsep/.
[9] OWASP Zed Attack Proxy, https://code.google.com/p/zaproxy/.
[10] S. Chen, Comparision of open-source and commercial web application

scanners, http://sectoolmarket.
[11] R. Saltzman, A. Sharabani, “Glass box testing : Thinking inside the

box”,
http://public.dhe.ibm.com/common/ssi/ecm/en/raw14283usen/RAW142
83USEN.PDF.

[12] HP WebInspect, http://www8.hp.com/us/en/software-
solutions/software.html?compURI=1341991#.VFU29cmnc8Y.

[13] K. Alemerien, K. Magel, “Examining the Effectiveness of Testing
Coverage Tools: An Empirical Study,” International Journal of Software
Engineering and Its Applications, Vol.8, No.5 (2014), pp.139-162.

[14] JaCoCo, http://www.eclemma.org/jacoco/.
[15] JCov , https://wiki.openjdk.java.net/display/CodeTools/jcov.

