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ABSTRACT 

In recent years, cyber security researchers have be-

come burdened by the time and cost necessary to instan-

tiate secure testbeds suitable for analyzing new threats or 

evaluating emerging technologies [1]. To alleviate this, 

DARPA initiated the National Cyber Range (NCR) pro-

gram to develop the architecture and software tools 

needed for a secure, self-contained cyber testing facility. 

Among NCR’s goals was the development of a range 

capable of rapid and automated reconfiguration of re-

sources, broad scalability, and support for running simul-

taneous experiments at different security levels [2]. 

In this paper we present our architecture for the 

Range-level Command & Control System (RangeC2) 

developed as part of the Johns Hopkins University Ap-

plied Physics Laboratory’s implementation of the NCR 

[3]. Our discussion includes the RangeC2’s functional 

and non-functional requirements, the rationale behind its 

partitioning into layered subsystems, an analysis of each 

subsystem’s fundamental mechanisms, and an in-depth 

look at their processing paradigms and data flows. 

To meet the demands of this range, the RangeC2 was 

required to perform three primary jobs: 1) management 

of all range resources; 2) management of numerous con-

current experiments; and 3) enforcement of each exper-

iment’s resource security and perimeter isolation. Our 

discussion of the architecture will show how these re-

quirements were met while overcoming the RangeC2’s 

most critical challenges. 

1 INTRODUCTION 

Considerable amounts of human and financial re-

sources are needed to assemble and configure cyber ex-

periment testbeds. The reasons for this are numerous, 

and include testbeds designed to run only one experi-

ment at a time, at a single security level, and with sup-

port for only manual configuration of hardware and 

software resources [1]. In response to these and other 

challenges, DARPA initiated the National Cyber Range 

(NCR) program to design and build the next generation 

cyber testing facility. From its inception, the NCR was 

designed with security and isolation as its highest priori-

ties. Nowhere did this apply more in the Johns Hopkins 

University Applied Physics Laboratory’s (APL) imple-

mentation of the NCR, also known as the Cyber Meas-

urement and Analysis Center (CMAC), than in the 

Range-level Command & Control System (RangeC2), 

which was charged with the management of all range 

resources and each experiment’s resource requirements. 

The RangeC2 also accomplished several other goals, 

including rapid and automated reconfiguration of the 

range’s physical connectivity, support for simultaneous, 

physically-isolated experiments at different security lev-

els, and oversight of processes that allowed freed re-

sources to be sanitized and used again in other experi-

ments. 

To achieve these goals, the RangeC2 was required to 

manage a Layer 1 Switch (L1 Switch). The OnPath UCS 

2908 L1 Switch [4] was selected for its ability to provide 

physically-isolated connectivity between any ports. In 

general, L1 Switches behave similarly to network patch 

panels, but include redundancy, diagnostic capabilities, 

and the ability to be dynamically configured through 

remote administration. 

The RangeC2 was also required to support additional 

range activities including: 1) inventory management, 

with authority over what resources were on the range 

and if they were in service or offline; 2) administration 

and presentation of resource states such as available, 

assigned, or resetting; 3) experiment import, which 

stored lists of required resource types and scheduled 

their availability; 4) physical management of experiment 

resources; and 5) administration and presentation of ex-

periment states such as building, running, or destroyed. 

Because CMAC simultaneously managed resources 

and experiments at different security levels, the RangeC2 

was required to always run at the system-high security 

level. For CMAC to run each experiment at its own se-

curity level, the responsibility for managing and execut-

ing those experiments was divided into two parts: the 

RangeC2, which managed resource assignment and 

physical connectivity across all experiments, and an Ex-

periment Command and Control System (ExpC2), which 

ran at the same security level as the experiment it was 

part of, while managing the remaining aspects of the 

experiment’s execution. To facilitate this, the RangeC2 

logically grouped all resources used by an experiment 

into a “container.” Then, as part of the RangeC2’s man-

agement of an experiment, it could: 1) build a container 
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by assigning available resources to it, including an 

ExpC2; 2) configure a container by altering the connec-

tivity among resources within it, or removing individual 

resources from it; and 3) destroy a container by un-

assigning all resources from it. We refer to these groups 

of resources as containers because the RangeC2, for rea-

sons of experiment isolation, had virtually no visibility 

into what was happening on those resources, making the 

fact that they were hosting cyber experiments irrelevant. 

It is therefore containers, not experiments, which defined 

the boundaries of isolation the RangeC2 was required to 

enforce.  

For the remainder of this paper, we will refer to the 

RangeC2’s management of containers rather than exper-

iments, using the term “experiments” only when discuss-

ing items specific to an experiment’s implementation. 

2 RANGE C2 CONTEXT 

The RangeC2 was required to communicate with 

several other CMAC components. The boundaries be-

tween these components were derived to maximize the 

isolation of each system while also providing increased 

levels of physical security to its most critical compo-

nents. Figure 1 shows both the communication paths and 

physical security design of CMAC as it related to the 

RangeC2. 

 
Figure 1 – Communication and Physical Security 

The Design Tool, used both by range staff and exter-

nal entities to generate experiments, would output sever-

al files detailing an experiment’s configuration and exe-

cution. When complete, one of these files would be 

burned to a DVD and delivered to the RangeC2 Client, 

which imported the experiment into the RangeC2. 

 The Range Repository was a multi-level-security 

system that maintained a listing of the range’s inventory, 

divided according to each resource’s security classifica-

tion. Whenever changes were made to the range’s inven-

tory, updates were made to the Range Repository’s files 

and then burned to a DVD for delivery to the RangeC2. 

The Power Distribution Unit (PDU) Network was an 

isolated network connecting the RangeC2 with the PDUs 

attached to each resource on the range. These PDUs pro-

vided the RangeC2 with control over each resource’s 

powered state. The L1 Switch Network was an isolated 

network that connected the RangeC2 to the L1 Switch. 

The Cross Domain Guards (CDGs) were specialized 

nodes that allowed only a basic set of predefined infor-

mation to flow between the RangeC2 and the containers. 

The information included only what was needed to build, 

configure, and destroy a container, or sanitize a resource.  

The ExpC2s were specialized resources that were in-

cluded in containers to execute an experiment. They un-

derstood the functionality provided by the RangeC2 and 

could issue requests to it and react to commands from it 

via the Cross-Domain Guards. 

Lastly, the Sanitization C2s (SanC2) were another 

type of specialized resource, possessing the same 

RangeC2 communication capabilities as the ExpC2s but 

designed for the sole purpose of resetting other resources 

so that they might be used again elsewhere. 

Figure 2 demonstrates how these components worked 

together by providing an example of the range’s state 

during normal operations. Here, the RangeC2 has as-

signed resources A, B, and ExpC2 to one container and 

resources D and SanC2 to another; resource C is unas-

signed [gray areas represent containers]. The RangeC2 

configured the connectivity (dotted lines) among re-

sources within a container, via the L1 Switch, but did not 

create connections that crossed a container’s boundary. 

Additionally, the RangeC2 controlled power to each 

resource via the PDU network, and communicated with 

the C2s in each container via the CDGs (dashed lines). 

 
Figure 2 – The range’s state during normal operations. 

3 ARCHITECTURAL OVERVIEW 

The RangeC2 was divided into four subsystems 

spread across three hosts. The subsystems were the 

RangeC2 Client, Range Controller (RC), Transaction 

System (TS), and Action Processor (AP); the latter two 

known collectively as the Switch Controller (SC). The 

rationale behind this distribution was security-based, and 

centered on four primary goals: 1) prevention of cascad-

ing failures, as each subsystem was designed to shield 

itself from errors occurring elsewhere; 2) division of 

responsibilities such that no single subsystem could plan, 

initiate, and execute a task (defined as a logical function 

of the RangeC2) without the cooperation of others; 
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3) layering of physical security such that the subsystems 

with the most control over the range’s state were on the 

most restricted hosts; and 4) separation of the RangeC2’s 

most critical activities (e.g. state management, container 

isolation, and range configuration) from its other less 

rigorous jobs as a way to reduce complexity and isolate 

the Certification and Accreditation (C&A) efforts. Fig-

ure 3 shows the subsystems that comprised the RangeC2, 

their interconnectivity, and connectivity to other compo-

nents. 

 
Figure 3 – Range C2 Partitioning 

The RangeC2 Client was the user interface for the 

RangeC2. It allowed users to import experiments, view 

the range’s schedule, request the building and destruc-

tion of containers, view current container and resource 

states, request resources be moved online/offline, and 

review system logs and alerts. Because it needed to be 

accessible, the RangeC2 Client was situated on its own 

host within the range’s high-security data center, allow-

ing it to be accessed by all range personnel. The client 

was designed to run intermittently and contain no persis-

tent data, forcing it to rely on the RC for the data it dis-

played and for the handling of its user’s requests. 

The Range Controller was the RangeC2’s system-

level processing engine and communications hub. It was 

responsible for scheduling containers, performing logi-

cal-to-physical mappings (mapping abstract resource 

types needed by an experiment to available resources 

that could be assigned to a container), and historical rec-

ord keeping of resource usage and maintenance. Because 

it was connected to the RangeC2 Client, the ExpC2s and 

SanC2s (via the CDGs), and the SC, the RC was also 

responsible for handling and responding to requests 

made by these systems. The RC could not fully process 

requests that affected the range’s state, however, making 

it a buffer between the SC (which could) and the other 

range components, which were assumed to always be 

untrusted. To strengthen its buffering capability, the RC 

was situated on its own host within the range’s restricted 

control room, where access was limited to only a small 

subset of range personnel. To support the remainder of 

its activities, the RC ran continuously, and accessed a 

private database. 

The SC was responsible for knowing the exact state 

of the range at all times (e.g. resource interconnectivity, 

assignment, and power; container state; resource state; 

etc.) and securely affecting changes to that state when 

requested and allowable [as the only part of the RangeC2 

capable of affecting change, the RangeC2’s portion of 

the C&A effort was targeted towards this subsystem]. 

Specifically, the TS would receive task-specific requests 

from the RC, determine how they should occur (includ-

ing all necessary security, assignment, and isolation 

checks), and then initiate their processing. The AP then 

processed each task, recording the results and updating 

the range’s state at every step. Additional functions, such 

as auto-initiated consistency checks and status request 

fulfillment, were also handled by the SC. Because of 

their tight coupling, the TS and AP were both situated on 

the same host within the range’s high-security data cen-

ter and shared a common, private database. These sub-

systems also ran continuously. 

4 RANGE CONTROLLER (RC) 

To manage the flow of range operations, the Range 

Controller was charged with making decisions that af-

fected how the range behaved at the system level. This 

included handling its normal range responsibilities and 

reacting to various process failures, such as when the SC 

was unable to complete a requested task due to security 

constraints or the failure of an external system. Although 

“security aware”, the RC’s primary goal was to support 

the usability needs of the range. 

The RC was designed as an asynchronous, event-

driven system. It received stimuli from external entities 

(in the form of RangeC2 Client, ExpC2, and SanC2 re-

quests, or SC responses) and then processed them within 

event handlers, one per stimulus type. After processing a 

stimulus, each handler culminated with either an inter-

mediate request to the SC or a response sent back to the 

requestor. Each handler was also thread-safe so multiple 

stimuli could be processed simultaneously, even if they 

were of the same type. To achieve this, the RC created 

worker threads for each stimulus that arrived and then 

executed the appropriate handler on that thread. Once the 

handler’s processing had completed, the thread was ter-

minated and all context associated with the event dis-

carded. As a result, when a handler culminated with an 

SC request, it stored enough information in the RC’s 

database to allow the response’s handler to understand 

the original request conditions. The advantage to this 

mechanism was that if the RC were taken offline while 

the SC was processing its request (a sometimes lengthy 

activity), the RC could still handle the SC’s response 

once it came back online. 

Figure 4 provides an overview of the RC’s pro-

cessing flow and is used to support the following exam-

ple, which demonstrates how the RC functioned. In this 
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Figure 4 – Range Controller Processing Flow 

example, an ExpC2 requests that the RangeC2 alter the 

physical topology of its container. 

Initially, the ExpC2 in container 1701 sends a mes-

sage, or stimulus, to the RangeC2 (via the CDGs, which 

verify each message’s origin) requesting that its contain-

er’s topology be changed (1). The ExpC2 also sends a 

request ID unique to itself (EC2RID) in the message. 

The RC receives the request, and fires a Topology-

Change event on a new thread (2) with the associated 

information. Next, the RC’s “Topology Change Event 

Handler” receives the event and begins to process it (3). 

To complete the request, the handler determines it must 

send a LOAD_PHYSICAL_TOPOLOGY request to the SC 

because the RC cannot directly alter the L1 Switch on its 

own. To do this, the handler first generates an Internal 

Request ID (IRID) [d9e6-RC2SC], then stores infor-

mation about this event in the RC’s database (4), and 

then finally sends the request to the SC for processing 

(5). Once sent, the RC’s part in this request’s processing 

is complete, so the handler’s thread is terminated and its 

in-memory state released.  

Later on the RC receives a response from the SC (6) 

with an IRID of d9e6-RC2SC stating the success {or 

failure} of the request. Based on this, the RC fires a 

RequestComplete event on a new thread (7), again 

with the associated information. Next, the RC’s “Re-

quest Complete Event Handler” receives the event (8) 

and uses the IRID to recall the information previously 

stored about this request (9). The handler then uses this 

information to finish processing the original request, 

which in this case only requires the handler to send a 

response containing the original EC2RID and the result 

of the request back to the ExpC2 in container 1701 (10), 

via the CDGs. 

5 SWITCH CONTROLLER (SC) 

The Switch Controller made changes to the range’s 

state, both logically (i.e. the RangeC2’s internal under-

standing of the system’s configuration) and physically 

(i.e. the range’s hardware configuration), in a way that 

strictly enforced security level constraints and the isola-

tion of containers. In fact, the SC had no interest in the 

success or failure of those tasks 

requested of it; rather it considered 

security, isolation, and state man-

agement its paramount goals. Any 

requests that violated these princi-

ples were halted, marked as failed, 

and left to the RC to determine how 

they affected the range’s overall 

operation. 

To achieve these goals the SC 

needed to keep a persistent record 

of the range’s exact state, even 

when it was being changed, as that 

record was the basis for all decisions made by the sys-

tem. To track the range’s state while changes were hap-

pening, the SC kept a record of its own processing state 

so that if it went offline unexpectedly, the SC could be 

brought back online in the same state it was in when it 

had failed. Without this, partially completed tasks would 

have led to disparities between the range’s actual state 

and its recorded state, causing the SC to make decisions 

based on flawed information. This capability also pro-

vided continuity for higher-level activities, as all re-

quests completed their processing and provided a result, 

even if system failures occurred along the way. The SC 

also provided status to the RC whenever necessary, and 

initiated routine system integrity checks to verify the 

accuracy of recorded state. 

5.1 TRANSACTIONS AND ACTIONS 

At the core of the SC was a two-phased approach to 

processing requests. The first phase, managed by the 

Transaction System, involved predetermining how re-

quests should be executed; the resulting list of steps was 

known as a Transaction. The second phase, managed by 

the Action Processor, involved the monitored and rec-

orded execution of each step, or Action, contained within 

a transaction. 

5.1.1 TRANSACTIONS 

Transactions represented the SC’s methodology for 

performing individual tasks. During the SC’s develop-

ment, transaction templates were created for each task 

the SC supported. These templates provided the rules for 

generating the list of actions needed to accomplish a 

task, but required specific information, such as an ID or 

current range state, to actually produce that list. When a 

specific task was requested, the corresponding template 

was invoked by passing in the required information, 

which then built an instance of the desired transaction. 

Fundamentally, these instances were nothing more than 
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sets of instructions (actions), and were themselves de-

coupled from the mechanisms responsible for carrying 

them out. Figure 5 demonstrates this process. 

 
Figure 5 – Transaction Build Process 

Many of the transaction types supported by the SC 

corresponded directly to requests received from the RC. 

Referred to as request transactions, some examples of 

these transaction types included: INVENTORY_UPDATE, 

INSTANTIATE_CONTAINER, LOAD_PHYSICAL_-

TOPOLOGY, TEAR_DOWN_CONTAINER, and MOVE_-

RESOURCE_OFFLINE.  

After a transaction was built, both its metadata and 

associated actions were stored in the SC’s database; once 

stored, the transaction was submitted for processing. One 

of the metadata attributes vital to tracking the progres-

sion of a transaction’s execution was its processing state. 

Table 1 describes these states. 

Table 1 – Transaction Processing States 

State Description 

QUEUED Processing has not yet started. This was the initial 

state of the transaction when stored in the SC’s DB. 

PROCESSING Processing has begun, but not yet finished. 

FAILED Indicates that an action resulted in an undesirable 

state. This includes process failures, such as a failed 

check or external system failure, and processing 

failures, such as an error in the code. 

SUCCEEDED Indicates that all actions completed successfully. 

FAILED- 

ACK 

Indicates that a FAILED transaction has been handled 

by the Switch Controller. 

SUCCEEDED-

ACK 

Indicates that a SUCCESSFUL transaction has been 

handled by the Switch Controller. 

One might conclude from Table 1 that transactions 

either succeeded or failed, but this is not entirely correct. 

Transactions had to be built before they were executed, 

and that process could have failed as well. Circumstanc-

es that led to this type of failure included invalid infor-

mation passed into a template (e.g. non-existent IDs), 

code errors, or the failure of any preliminary checks, 

which were assertions in each template that helped pre-

determine if a transaction was destined to fail during 

execution. Early identification of these transactions, pri-

or to transaction execution, was preferred because the 

recovery process at that stage was much simpler than for 

executing transactions. It’s worth noting that while some 

preliminary checks were conclusive, many were not, 

because the state of the range was subject to change be-

tween the time a transaction was built and the time it was 

executed. Accordingly, preliminary checks only prevent-

ed a transaction from executing, which meant that each 

condition tested as part of a preliminary check had to be 

re-tested at the time of execution. 

Each request made of the SC could have one of three 

possible results: failure to build, failure to execute, and 

success. The SC was required to handle all three out-

comes for each transaction type. This led to the devel-

opment of a transaction flow matrix (TFM), which de-

scribed the specific activities the SC should take in re-

sponse to each result. For transactions that were success-
fully built, achieving either the FAILED_ACK or SUC-

CEEDED_ACK state required that all responses dictated by 

the TFM be completed first. Table 2 lists the response 

types available to the SC. 

Table 2 – Transaction Flow Matrix Responses 

Response Description 

Success to RC Report the success of this transaction to the RC. 

Failure to RC Report the failure of this transaction to the RC. 

Do Nothing Take no further steps. 

Raise Alarm Raise an alarm, which was a tool for reporting 

errors outside the linear flow of processing. 

New Transaction Start a new transaction in response to this one.  

Initiate Reset 

Process 

Initiate the reset process, which was responsi-

ble for sanitizing resources. 

Often, the failure of an executing transaction led to 

the invocation of another whose sole purpose was to 

clean up after the failed one. These recovery transactions 

brought the range back to normal operation by identify-

ing where the failure occurred and taking the necessary 

steps to reverse the process; sometimes this was simple, 

but other times required resources to be disconnected, 

sanitized, or forced offline. Since recovery transactions 

altered the range’s state, they too were subject to the full 

transaction lifecycle, including being part of the TFM.  

5.1.2 ACTIONS 

Actions were the atomic units of work that the SC 

could perform. By atomic we mean that each action ex-

isted independently of all other actions but was itself 

indivisible. By indivisible we mean that if an action’s 

unit of work was attempted, regardless of success, the 

results had to be recorded. While transaction templates 

were aware of the action types they could enlist, actions 

were transaction agnostic, focusing only on their work 

and therefore accessible to every transaction in any con-

text. Some examples of action types included New-

Container-Assignment, Power-On-Resource, 

Break-L1-Connection, and Set-Resource-Dirty. 

Although some actions made physical changes to the 

range, most either altered its logical state or asserted 

various conditions. It was through these “assertion” 

based actions, in coordination with strict rules governing 

their execution, that the system was made secure. 

Like transactions, each action also had metadata and 

a processing state associated with it. Table 3 describes 
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the different processing states an action could be in, and 

how they were used to recover from situations in which 

an action was terminated part way through its execution. 

Table 3 – Action Processing States 

State Description 

QUEUED Processing has not yet started.  

QUEUED-

INITIALIZED 

Dispatched for execution, but not yet executing. 

Prevents other actions from being dispatched.  

RECOVERY-

INITIALIZED 

Equivalent to QUEUED-INITIALIZED, but knowing that 

this action originated from the RECOVERY state. 

PROCESSING Action is being executed. This was the only state 

where an action’s indivisibility was in question, so 

time in this state was minimized. If an action enters 

this state from the RECOVERY-INITIALIZED state, it 

knows that it was previously running and must now 

pick up where it left off. 

RECOVERY Was previously PROCESSING but interrupted mid-

way due to a shutdown or system failure.  

FAILED The action’s work encountered an error or failed an 

assertion, and the results were recorded. 

SUCCEEDED The action’s work completed successfully and the 

results were recorded. 

Figure 6 shows the transitions between an action’s 

processing states. The dotted lines represent transitions 

that occurred whenever the system was brought online. 

 
Figure 6 – Action Processing State Transitions 

5.1.3 ADDITIONAL FEATURES 

Progress, Logging, & Forensics: By storing the ac-

tions associated with each transaction prior to execution, 

and updating each action’s state during execution, the 

SC was able to easily generate structured logs on-

demand for each transaction on the range. Logs generat-

ed prior to a transaction’s completion also detailed the 

transaction’s progress by showing which actions were 

completed, processing, or still queued. Resource-based 

and container-based logs could also be generated, detail-

ing every transaction, and compo-

nent action thereof, which occurred 

during their respective lifetimes. 

Independent Review: As a can-

didate for C&A, and as the system 

most responsible for security and 

isolation in the RangeC2, the ability 

of the SC’s algorithms to be inde-

pendently reviewed was of para-

mount concern. To achieve this, the 

transaction/action paradigm drew 

clear lines, both logically and in 

code, between the processing en-

gine, the rules defining how tasks occurred, and the 

mechanisms used to perform the work. So, instead of a 

code base that interwove these concepts together, each 

template and action was self-contained and independent.  

5.2 TRANSACTION SYSTEM (TS) 

 The Transaction System managed the flow of trans-

actions through the SC. This meant accepting requests 

initiated internally or by the RC, building transactions 

based upon those requests, sending the transactions to 

the AP for execution, and processing the results through 

the TFM.  

All communication between the TS and the RC took 

place within a limited API that existed only at the task 

and status request levels. By design, no mechanism ex-

isted for requesting more-granular activities from the TS, 

as that may have usurped the security restrictions it was 

responsible for maintaining. This feature, in combination 

with each transaction template’s hard-coded rules and 

security checks, allowed the TS to handle any input, no 

matter how malicious or misguided, and still behave in a 

secure manner. This was a key consideration in focusing 

the RangeC2 portion of the C&A effort on the SC only.  

At the center of the TS was a single “main” thread 

that managed the flow of all transactions. When requests 

arrived, they were placed with their attributes in a Task 

Queue (Task-Q), which stored them until they could be 

processed, and acted as a thread boundary making all 

requests asynchronous. Once in the queue, the main 

thread would retrieve the task, determine its type, and 

invoke the appropriate template. If building the transac-

tion failed, the TFM would determine the appropriate 

course of action; if it succeeded, the transaction was 

stored in the SC’s database and the AP asked to execute 

it. When the AP finished, it signaled the TS by placing a 

notification in the Response Queue (Resp.-Q). The main 

thread then retrieved this notification, loaded the transac-

tion, and processed the results through the TFM. 

Figure 7 provides an overview of the TS’s processing 

flow and is also used to support the following example, 

Figure 7 - Transaction System Processing Flow 
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which demonstrates how the TS functioned. This exam-

ple continues where the previous one left off. 

Initially, the TS receives a LOAD_PHYSICAL_TOP-

OLOGY request from the RC, with attributes detailing the 

request’s desired topology, Container ID [1701], and 

IRID [d9e6-RC2SC], and places it in the Task-Q (1). 
Next, the main thread pops this request off the queue, 
determines its type, and passes the accompanying attrib-

utes into a LOAD_PHYSICAL_TOPOLOGY transaction 
template (2). Using the attributes and the range’s state, 
the template determines the necessary actions required to 
achieve the desired topology change, which for this task 

includes (in order): Verify-Container-Instanti-

ated (α)[confirms the container is running], Resource-

Assignment-Check (β)[1 per resource; confirms the 

resource is assigned to the container], Break-L1-

Connection (δ)[1 per current connection], and Make-

L1-Connection (ε)[1 per new connection] (3). Once 
built, the transaction and its actions are stored in the SC 

database with all processing states set to QUEUED (4), 
the AP is notified of the new transaction (5) by its ID in 

the database, say 127, and the main thread moves on. 
Had the build process failed, nothing would have been 
stored in the database and the TFM would have handled 

the result (5a) by initiating a Failure to RC response (5b). 

Later on the AP notifies the TS that it’s done with a 

transaction by adding a response to the Resp.-Q (6). 

Next, the main thread pops this response off the queue, 

determines it was for transaction 127, and retrieves that 

transaction from the database. The TS then passes this 

information to the TFM (7) where its processing state, 
now set to SUCCEEDED, is used to determine how it will 

be handled; for this transaction type, a successful out-
come only requires a Success to RC response (8). Once 

the notification (which includes the IRID) is sent, the 
transaction’s processing state is set to SUCCEEDED_ACK 

and the TS’s role in this process is complete. Had the 

transaction failed, the TFM would have performed both 
a Failure to RC response (8a) and a New Transaction 

response of type LOAD_PHYSICAL_TOPOLOGY_-

RECOVERY using attributes pulled from the original 

transaction (8b). 

While nearly all transactions occurred as a result of 

an external request or TFM response, maintenance trans-

actions were initiated by the TS at regular intervals re-

gardless of all other activities. Designed to be “self-

checks”, these transactions were tasked with detecting 

inconsistencies between the SC’s record of the range’s 

physical state, and the current configurations returned by 

the L1 Switch and PDUs at the time of the check. If a 

disparity was found, it resulted in the transaction’s fail-

ure, which caused the TS to raise an alarm as this was an 

indication of potential range tampering. Maintenance 

transactions also queried these physical devices for their 

own alarms (e.g. a dying battery) and reported any issues 

found. 

Finally, the TS also managed the reset process asso-

ciated with each resource brought online or freed from a 

container. This activity was achieved through a series of 

sanitization transactions that brought resources back to a 

state where they could be re-assigned. 

5.3 ACTION PROCESSOR (AP) 

The Action Processor’s singular purpose was to exe-

cute the actions contained within transactions according 

a set of rules, which governed the process:  

1. All transactions that were part of the same container 

must be processed consecutively. 

2. Transactions that were from different containers 

could be processed concurrently. 

3. All actions within a transaction must be executed 

consecutively and in sequence order; if an action 

fails, processing of that transaction fails and any re-

maining actions go unexecuted.  

4. The same action type may be executed concurrently, 

from separate transactions, unless otherwise specified 

by an action lock. 

To adhere to these rules, the AP divided all transac-

tions into two categories: those that existed as part of a 

container, such as LOAD_PHYSICAL_TOPOLOGY, and 

those that did not, such as MOVE_RESOURCE_ONLINE. 

Then, all transactions considered not part of a container 

were assumed to be in a single “null” container. 

At the center of the AP was a main thread that sup-

ported the execution of transactions and actions. When 
notification of a new QUEUED transaction arrived, the 

main thread retrieved that transaction from the SC data-

base, and if it was not from a container already having 

another transaction processed, it would be added to the 

AP’s list of currently processing transactions and marked 
as PROCESSING in the database. Once set up, the transac-

tion’s first action was marked as QUEUED-INITIALIZED 

and dispatched for execution on a new worker thread. 

When the action was ready to perform its unit of work, 
the action was marked as PROCESSING, the work oc-

curred, and then the action was marked as SUCCEEDED 

or FAILED, depending on the result. Upon completion of 

an action, notification was sent to the Action Queue (Ac-

tion-Q), where the main thread retrieved the notification 

and processed the results according to three rules: 

1. If the action succeeded and there were more actions 

in the transaction, the next action was dispatched. 

2. If the action failed, the transaction was marked as 
FAILED and processing of that transaction was halted. 

3. If the action succeeded and there were no more ac-

tions in the transaction, the transaction was marked 
as SUCCEEDED and its processing was halted.  
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Once a transaction’s processing was halted, the main 

thread removed it from the list of currently processing 

transactions and notified the TS of its completion. Final-
ly, the main thread queried the database for QUEUED 

transactions from the same container as the transaction 

that just completed; if one was found, it was set up – 

repeating the process. 

Figure 8 provides an overview of the AP’s pro-

cessing flow, and is also used to support the following 

example that demonstrates how the AP functioned. This 

example continues where the previous one left off. 

Initially, the AP receives a notification of a new 

transaction with ID 127 (1). The transaction is retrieved 

from the database and determined to be part of container 

1701 (2). The AP reviews its list of currently processing 

transactions and concludes that no other processing 

transactions are part of that container. As a result, trans-

action 127 is added to the list (3: X=127, A=1701) and 
its processing state is set to PROCESSING. Once added, 

transaction 127’s first action, with a type of Verify-

Container-Instantiated (α) is dispatched for pro-
cessing by setting its processing state to QUEUED-

INITIALIZED and then transferring its execution to a new 

worker thread (4). From there, the action enters the block 

of code responsible for executing actions of this type and 

it is executed (5). To do this, the action is first marked as 
PROCESSING, then the check takes place (Container 

1701 is running), and finally the action is marked as 
SUCCEEDED. Once complete, a notification is sent to the 

Action-Q (6) where the main thread retrieves it, looks at 

the result of the action and the transaction it originated 
from, sees there are still more QUEUED actions in trans-

action 127, and dispatches the next one. Once the last 
action completes, transaction 127 is marked as SUC-

CEEDED, removed from the list, and a notification is sent 

to the TS informing it transaction 127 has finished (7). 

Had another transaction from container 1701 arrived 

while this one was processing, it would now be given an 

opportunity to execute. 

Although most actions could execute concurrently as 

part of separate transactions, some were subject to 

mutexes (action locks) that prevented more than one 

thread from accessing a set of actions at the same time; 

some action locks affected only a single action, while 

others affected multiple actions. For example: one action 

lock wrapped just the New-Container-Assignment 

action, which both checked the availability of resources 

and assigned them to a container. Had multiple threads 

been able to execute this action concurrently, race condi-

tions may have led to the assignment of a single resource 

to multiple containers – a clear vio-

lation of container isolation. Other 

action locks wrapped multiple ac-

tions, such as the one that wrapped 

all actions that communicated with 

L1 Switch. This prevented 1) mul-

tiple requests from being sent to the 

L1 Switch at the same time, and 2) 

changes to the L1 Switch configu-

ration during consistency checks. 

6 ALARM SYSTEM 

Integrated throughout all sub-

systems of the RangeC2 was an 

alarm system that allowed any code path to report an 

error, inconsistency, or unanticipated result through 

channels outside the linear flow of processing. Under the 

premise that no issue should ever be ignored, it recorded 

and propagated to the end user every issue (alarm) raised 

so that each alarm’s potential impact on system integrity 

could be analyzed and appropriately handled. With every 

alarm came a time-stamp, origin, severity, technical de-

scription of the issue, and a human-readable analysis 

describing the context of the issue and how it should be 

addressed. In general, there were five circumstances that 

raised an alarm: 1) unanticipated exceptions [exceptions 

thrown in a context not anticipated by the developers]; 

2) severe errors [errors accounted for, but indicative of 

larger problems]; 3) recovery failures [TFM’s response 
to a FAILED recovery transaction: since initiated internal 

to the SC, this was the only mechanism for expressing 

their failure]; 4) system maintenance issues [similar to 

recovery failures, but indicative of serious problems or 

malicious behavior]; and 5) identification errors [mes-

sages sent to the RC from unrecognized sources]. 

7 LESSONS LEARNED 

The system described was developed over a sixteen-

month period between Jan. 2010 and Apr. 2011. Overall, 

it proved adaptable to change and required no deviations 

from the architecture in order to complete. 

Figure 8 - Action Processor Processing Flow 
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During its development, early adoption and rigorous 

adherence to external interfaces were pivotal to the com-

pletion and integration of this system. Use of the Agile 

methodology also proved beneficial by defining achiev-

able goals, such as building a container or changing its 

topology, and allowing routine integration of the system. 

The most remarkable aspect of the system, however, was 

its ability to prevent logical errors by separating the logic 

from the execution, as described in section 5.1.3. 

One element of the system’s design we would like to 

have changed was the requirement that messages to/from 

the SanC2 be bridged through the RC. Although this 

provided the buffer described in Section 3, it also re-

quired that information related to sanitization pass 

through systems outside of the SC, SanC2, and CDGs. 

Additionally, the SC might have benefitted from a new 

transaction processing state representing the “building” 

phase. This state would have reduced the time between a 

requests arrival at the TS and its initial persistence. 
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